Sophie

Sophie

distrib > Mageia > 5 > x86_64 > by-pkgid > 0da03bb1805d73f1aaf1c06fe3cffe2f > files > 600

fontforge-1.0-1.20120731.9.mga5.x86_64.rpm

<HTML>
<HEAD>
  <!-- Created with AOLpress/2.0 -->
  <!-- AP: Created on: 18-Jul-2003 -->
  <!-- AP: Last modified: 28-Apr-2010 -->
  <TITLE>FontForge's math</TITLE>
  <LINK REL="icon" href="fftype16.png">
  <LINK REL="stylesheet" TYPE="text/css" HREF="FontForge.css">
</HEAD>
<BODY>
<DIV id="in">
  <H1 ALIGN=Center>
    FontForge's math
  </H1>
  <P>
  <EM>Being a brief description of the mathematics underlying various of
  FontForge's commands <BR>
  It is presumed that you understand about parameterized splines, if not look
  at the description of <A HREF="bezier.html">B&eacute;zier curves</A>.</EM>
  <UL>
    <LI>
      <A HREF="pfaeditmath.html#Linear">Linear Transformations</A>
    <LI>
      <A HREF="pfaeditmath.html#maxima">Finding maxima and minima of a spline</A>
    <LI>
      <A HREF="#Rasterizing">Rasterizing a Glyph</A>
      <UL>
	<LI>
	  finding intersections
	<LI>
	  removing overlap
      </UL>
    <LI>
      <A HREF="pfaeditmath.html#Approximating">Approximating a spline</A>
    <LI>
      <A HREF="pfaeditmath.html#Stroke">Stroking a spline</A>
    <LI>
      <A HREF="bezier.html#ps2ttf">Approximating a cubic spline by a series of
      quadratic splines</A>
  </UL>
  <P>
    <HR>
  <H2>
    <A NAME="Linear">Linear</A> Transformations
  </H2>
  <P>
  A linear transformation is one where the spline described by transforming
  the end and control points will match the transformed spline. This includes
  most of the common transformations you might wish:
  <UL>
    <LI>
      translation
      <TABLE CELLPADDING="2">
	<TR>
	  <TD><I>x'</I></TD>
	  <TD>=</TD>
	  <TD><I>x + dx</I></TD>
	</TR>
	<TR>
	  <TD><I>y'</I></TD>
	  <TD>=</TD>
	  <TD><I>y + dy</I></TD>
	</TR>
      </TABLE>
    <LI>
      scaling
      <TABLE CELLPADDING="2">
	<TR>
	  <TD><I>x'</I></TD>
	  <TD>=</TD>
	  <TD><I>s<SUB>x</SUB> * x</I></TD>
	</TR>
	<TR>
	  <TD><I>y'</I></TD>
	  <TD>=</TD>
	  <TD><I>s<SUB>y</SUB> * y</I></TD>
	</TR>
      </TABLE>
    <LI>
      rotation
      <TABLE CELLPADDING="2">
	<TR>
	  <TD><I>x'</I></TD>
	  <TD>=</TD>
	  <TD><I>cos(A)*x + sin(A)*y</I></TD>
	</TR>
	<TR>
	  <TD><I>y'</I></TD>
	  <TD>=</TD>
	  <TD><I>-sin(X)*x + cos(A)*y</I></TD>
	</TR>
      </TABLE>
    <LI>
      skewing
      <TABLE CELLPADDING="2">
	<TR>
	  <TD><I>x'</I></TD>
	  <TD>=</TD>
	  <TD><I>x + sin(A)*y</I></TD>
	</TR>
	<TR>
	  <TD><I>y'</I></TD>
	  <TD>=</TD>
	  <TD><I>y</I></TD>
	</TR>
      </TABLE>
  </UL>
  <P>
    <HR>
  <H2>
    Finding <A NAME="maxima">maxima</A> and minima of a spline
  </H2>
  <P>
  The maximum or minimum of a spline (along either the x or y axes) may be
  found by taking the first derivative of that spline with respect to t. So
  if we have a spline
  <BLOCKQUOTE>
    <PRE>    x = a<SUB>x</SUB>*t<SUP>3</SUP> + b<SUB>x</SUB>*t<SUP>2</SUP> + c<SUB>x</SUB>*t +d<SUB>x</SUB>
    y = a<SUB>y</SUB>*t<SUP>3</SUP> + b<SUB>y</SUB>*t<SUP>2</SUP> + c<SUB>y</SUB>*t +d<SUB>y</SUB>
</PRE>
  </BLOCKQUOTE>
  <P>
  and we wish to find the maximum point with respect to the x axis we set:
  <BLOCKQUOTE>
    <PRE>    dx/dt = 0
    3*a<SUB>x</SUB>*t<SUP>2</SUP> + 2*b<SUB>x</SUB>*t + c<SUB>x</SUB> = 0
 
</PRE>
  </BLOCKQUOTE>
  <P>
  and then using the quadratic formula we can solve for t:
  <TABLE CELLPADDING="2">
    <TR>
      <TD ROWSPAN=3>t=</TD>
      <TD><P ALIGN=Center>
	-2*b<SUB>x </SUB>&#177; sqrt(4*b<SUB>x</SUB><SUP>2</SUP> -
	4*3*a<SUB>x</SUB>*c<SUB>x</SUB>)</TD>
    </TR>
    <TR>
      <TD><P ALIGN=Center>
	-----------------------------------</TD>
    </TR>
    <TR>
      <TD><P ALIGN=Center>
	2*3*a<SUB>x</SUB></TD>
    </TR>
  </TABLE>
  <P>
    <HR>
  <H2>
    <A NAME="POI">Finding points of inflection</A> of a spline
  </H2>
  <P>
  A point of inflection occurs when d<SUP>2</SUP>y/dx<SUP>2</SUP>==0 (or infinity).
  <P>
  Unfortunately this does not mean that d<SUP>2</SUP>y/dt<SUP>2</SUP>==0 or
  d<SUP>2</SUP>x/dt<SUP>2</SUP>==0.
  <TABLE CELLPADDING="2">
    <TR>
      <TD>d<SUP>2</SUP>y/dx<SUP>2 </SUP>=</TD>
      <TD>d/dt ((dy/dt)/(dx/dt)) / dx/dt</TD>
    </TR>
    <TR>
      <TD></TD>
      <TD>( ((dx/dt) * d<SUP>2</SUP>y/dt<SUP>2</SUP>) - ((dy/dt) *
	d<SUP>2</SUP>x/dt<SUP>2</SUP>)) / (dx/dt)<SUP>3</SUP></TD>
    </TR>
  </TABLE>
  <P>
  After a lot of algebra this boils down to the quadratic in t:
  <TABLE CELLPADDING="2">
    <TR>
      <TD ROWSPAN=3>&nbsp;</TD>
      <TD>3*(a<SUB>x</SUB>*b<SUB>y</SUB>-a<SUB>y</SUB>*b<SUB>x</SUB>)*t<SUP>2</SUP>
	+</TD>
      <TD></TD>
    </TR>
    <TR>
      <TD>3*(c<SUB>x</SUB>*a<SUB>y</SUB>-c<SUB>y</SUB>*a<SUB>x</SUB>)*t +</TD>
      <TD></TD>
    </TR>
    <TR>
      <TD>c<SUB>x</SUB>*b<SUB>y</SUB>-c<SUB>y</SUB>*b<SUB>x</SUB></TD>
      <TD>= 0</TD>
    </TR>
  </TABLE>
  <P>
  If you examine this closely you will note that a quadratic spline
  (a<SUB>y</SUB>==a<SUB>x</SUB>==0) can never have a point of inflection.
  <P>
    <HR>
  <H2>
    <A NAME="Rasterizing">Rasterizing</A> a glyph
  </H2>
  <P>
    <HR>
  <H2>
    <A NAME="Approximating">Approximating</A> a spline
  </H2>
  <P>
  Many of FontForge's commands need to fit a spline to a series of points.
  The most obvious of these are the Edit-&gt;Merge, and Element-&gt;Simplify
  commands, but many others rely on the same technique. Let us consider the
  case of the Merge command, suppose we have the following splines and we wish
  to remove the middle point and generate a new spline that approximates the
  original two:
  <P>
  &nbsp; &nbsp; &nbsp;
  <IMG SRC="mergepre.png" WIDTH="192" HEIGHT="120" ALIGN="Middle"> =&gt;
  <IMG SRC="mergepost.png" WIDTH="192" HEIGHT="120" ALIGN="Middle">
  <P>
  FontForge uses a least squares approximation to determine the new spline.
  It calculates the locations of several points along the old splines, and
  then it guesses<SUP><A HREF="#guess-t">1</A></SUP> at t values for those
  points.
  <P>
  Now a cubic <A href="bezier.html">B&eacute;zier</A> spline is determined
  by its two end points (P<SUB>0</SUB> and P<SUB>1</SUB>) and two control points
  (CP<SUB>0</SUB> and CP<SUB>1</SUB>, which specify the slope at those end
  points). Here we know the end points, so all we need is to find the control
  points. The spline can also be expressed as a cubic polynomial:
  <BLOCKQUOTE>
    S(t) = a*t<SUP>3</SUP> + b*t<SUP>2</SUP> + c*t +d<BR>
    &nbsp; &nbsp; -- with --<BR>
    d = P0<BR>
    c = 3*CP0 - 3*P0<BR>
    b = 3*CP1 - 6*CP0 + 3*P0<BR>
    a = P1 - 3*CP1 + 3*CP0 - P0<BR>
    <!--S<SUB>x</SUB>(t) = a<SUB>x</SUB>*t<SUP>3</SUP> + b<SUB>x</SUB>*t<SUP>2</SUP>
    +
    c<SUB>x</SUB>*t +d<SUB>x</SUB><BR>
    S<SUB>y</SUB>(t) = a<SUB>y</SUB>*t<SUP>3</SUP> + b<SUB>y</SUB>*t<SUP>2</SUP>
    +
    c<SUB>y</SUB>*t +d<SUB>y</SUB>--> &nbsp; &nbsp; substituting<BR>
    S(t) = (P1 - 3*CP1 + 3*CP0 - P0)*t<SUP>3</SUP> +<BR>
    &nbsp; (3*CP1 - 6*CP0 + 3*P0)*t<SUP>2</SUP> +<BR>
    &nbsp; (3*CP0 - 3*P0)*t +<BR>
    &nbsp; P0<BR>
    &nbsp; &nbsp; rearranging<BR>
    S(t) = (-3*t<SUP>3</SUP> + 3*t<SUP>2</SUP>) * CP1 +<BR>
    &nbsp; (3*t<SUP>3</SUP> - 6*t<SUP>2</SUP> + 3*t) * CP0 +<BR>
    &nbsp; (P1-P0)*t<SUP>3</SUP> + 3*P0*t<SUP>2</SUP> - 3*P0*t + P0
  </BLOCKQUOTE>
  <P>
  Now we want to minimize the sum of the squares of the difference between
  the value we approximate with the new spline, S(t<SUB>i</SUB>), and the actual
  value we were given, P<SUB>i</SUB>.
  <TABLE>
    <TR>
      <TD>&nbsp; &nbsp; &nbsp; &nbsp;</TD>
      <TD><IMG src="Sigma28x33.png" width="28" height="33"></TD>
      <TD>[ S(t<SUB>i</SUB>) - P<SUB>i</SUB>]<SUP>2</SUP></TD>
    </TR>
  </TABLE>
  <P>
  Now we have four unknown variables, the x and y coordinates of the two control
  points. To find the minimum of the above error term we must take the derivative
  with respect to each variable, and set that to zero. Then we have four equations
  with four unknowns and we can solve for each variable.
  <TABLE>
    <TR>
      <TD>&nbsp; &nbsp; &nbsp; &nbsp;</TD>
      <TD><IMG src="Sigma28x33.png" width="28" height="33"></TD>
      <TD>2* (-3*t<SUP>3</SUP> + 3*t<SUP>2</SUP>)*[
	S<SUB>x</SUB>(t<SUB>i</SUB>) - P<SUB>i.x</SUB>] = 0</TD>
    </TR>
    <TR>
      <TD>&nbsp; &nbsp; &nbsp; &nbsp;</TD>
      <TD><IMG src="Sigma28x33.png" width="28" height="33"></TD>
      <TD>2* (-3*t<SUP>3</SUP> + 3*t<SUP>2</SUP>)*[
	S<SUB>y</SUB>(t<SUB>i</SUB>) - P<SUB>i.y</SUB>] = 0</TD>
    </TR>
    <TR>
      <TD>&nbsp; &nbsp; &nbsp; &nbsp;</TD>
      <TD><IMG src="Sigma28x33.png" width="28" height="33"></TD>
      <TD>2* (3*t<SUP>3</SUP> - 6*t<SUP>2</SUP> + 3*t)*[
	S<SUB>x</SUB>(t<SUB>i</SUB>) - P<SUB>i.x</SUB>] = 0</TD>
    </TR>
    <TR>
      <TD>&nbsp; &nbsp; &nbsp; &nbsp;</TD>
      <TD><IMG src="Sigma28x33.png" width="28" height="33"></TD>
      <TD>2* (3*t<SUP>3</SUP> - 6*t<SUP>2</SUP> + 3*t)*[
	S<SUB>y</SUB>(t<SUB>i</SUB>) - P<SUB>i.y</SUB>] = 0</TD>
    </TR>
  </TABLE>
  <P>
  Happily for us, the x and y terms do not interact and my be solved separately.
  The procedure is the same for each coordinate, so I shall only show one:
  <TABLE>
    <TR>
      <TD>&nbsp; &nbsp; &nbsp; &nbsp;</TD>
      <TD><IMG src="Sigma28x33.png" width="28" height="33"></TD>
      <TD colspan="3">2* (-3*t<SUP>3</SUP> + 3*t<SUP>2</SUP>)*[
	S<SUB>x</SUB>(t<SUB>i</SUB>) - P<SUB>i.x</SUB>] = 0</TD>
    </TR>
    <TR>
      <TD>&nbsp; &nbsp; &nbsp; &nbsp;</TD>
      <TD><IMG src="Sigma28x33.png" width="28" height="33"></TD>
      <TD colspan="3">2* (3*t<SUP>3</SUP> - 6*t<SUP>2</SUP> + 3*t)*[
	S<SUB>x</SUB>(t<SUB>i</SUB>) - P<SUB>i.x</SUB>] = 0</TD>
    </TR>
    <TR>
      <TD colspan="5" align="center">=&gt;</TD>
    </TR>
    <TR>
      <TD>&nbsp; &nbsp; &nbsp; &nbsp;</TD>
      <TD><IMG src="Sigma28x33.png" width="28" height="33"></TD>
      <TD>(-3*t<SUP>3</SUP> + 3*t<SUP>2</SUP>)*</TD>
      <TD>[ (-3*t<SUP>3</SUP> + 3*t<SUP>2</SUP>) * CP1<SUB>x</SUB> +<BR>
	&nbsp; (3*t<SUP>3</SUP> - 6*t<SUP>2</SUP> + 3*t) * CP0<SUB>x</SUB> +<BR>
	&nbsp; (P1<SUB>x</SUB>-P0<SUB>x</SUB>)*t<SUP>3</SUP> +
	3*P0<SUB>x</SUB>*t<SUP>2</SUP> - 3*P0<SUB>x</SUB>*t + P0<SUB>x</SUB> -
	P<SUB>i.x</SUB> ]</TD>
      <TD>= 0</TD>
    </TR>
  </TABLE>
  <TABLE>
    <TR>
      <TD>&nbsp; &nbsp; &nbsp; &nbsp;</TD>
      <TD>CP1<SUB>x</SUB></TD>
      <TD><IMG src="Sigma28x33.png" width="28" height="33"></TD>
      <TD>(-3*t<SUP>3</SUP> + 3*t<SUP>2</SUP>)*(-3*t<SUP>3</SUP> + 3*t<SUP>2</SUP>)</TD>
      <TD>=</TD>
      <TD>-</TD>
      <TD><IMG src="Sigma28x33.png" width="28" height="33"></TD>
      <TD>(-3*t<SUP>3</SUP> + 3*t<SUP>2</SUP>)*</TD>
      <TD>[ (3*t<SUP>3</SUP> - 6*t<SUP>2</SUP> + 3*t) * CP0<SUB>x</SUB> +<BR>
	&nbsp; (P1<SUB>x</SUB>-P0<SUB>x</SUB>)*t<SUP>3</SUP> +
	3*P0<SUB>x</SUB>*t<SUP>2</SUP> - 3*P0<SUB>x</SUB>*t + P0<SUB>x</SUB> -
	P<SUB>i.x</SUB> ]</TD>
    </TR>
  </TABLE>
  <TABLE>
    <TR>
      <TD rowspan="3">&nbsp; &nbsp; &nbsp; &nbsp;</TD>
      <TD rowspan="3">CP1<SUB>x</SUB></TD>
      <TD rowspan="3">=</TD>
      <TD rowspan="3">-</TD>
      <TD><IMG src="Sigma28x33.png" width="28" height="33"></TD>
      <TD>(-3*t<SUP>3</SUP> + 3*t<SUP>2</SUP>)*</TD>
      <TD>[ (3*t<SUP>3</SUP> - 6*t<SUP>2</SUP> + 3*t) * CP0<SUB>x</SUB> +<BR>
	&nbsp; (P1<SUB>x</SUB>-P0<SUB>x</SUB>)*t<SUP>3</SUP> +
	3*P0<SUB>x</SUB>*t<SUP>2</SUP> - 3*P0<SUB>x</SUB>*t + P0<SUB>x</SUB> -
	P<SUB>i.x</SUB> ]</TD>
    </TR>
    <TR>
      <TD colspan="3">
	  <HR>
      </TD>
    </TR>
    <TR>
      <TD colspan="3"><TABLE align="center">
	  <TR>
	    <TD><IMG src="Sigma28x33.png" width="28" height="33"></TD>
	    <TD>(-3*t<SUP>3</SUP> + 3*t<SUP>2</SUP>)*(-3*t<SUP>3</SUP> + 3*t<SUP>2</SUP>)</TD>
	  </TR>
	</TABLE>
      </TD>
    </TR>
  </TABLE>
  <P>
  Now this can be plugged into the other equation
  <TABLE>
    <TR>
      <TD>&nbsp; &nbsp; &nbsp; &nbsp;</TD>
      <TD><IMG src="Sigma28x33.png" width="28" height="33"></TD>
      <TD>(3*t<SUP>3</SUP> - 6*t<SUP>2</SUP> + 3*t)*</TD>
      <TD>[ (-3*t<SUP>3</SUP> + 3*t<SUP>2</SUP>) * CP1<SUB>x</SUB> +<BR>
	&nbsp; (3*t<SUP>3</SUP> - 6*t<SUP>2</SUP> + 3*t) * CP0<SUB>x</SUB> +<BR>
	&nbsp; (P1<SUB>x</SUB>-P0<SUB>x</SUB>)*t<SUP>3</SUP> +
	3*P0<SUB>x</SUB>*t<SUP>2</SUP> - 3*P0<SUB>x</SUB>*t + P0<SUB>x</SUB> -
	P<SUB>i.x</SUB> ]</TD>
      <TD>= 0</TD>
    </TR>
  </TABLE>
  <P>
  And we can solve for CP0<SUB>x</SUB> and then CP1<SUB>x</SUB>. The algebra
  becomes very messy, with lots of terms, but the concepts are simple.
  <P>
  Thus we know where the control points are. We know where the end points are.
  We have our spline.
  <H3>
    Why that didn't (quite) work
  </H3>
  <P>
  The above matrix yields a curve which is a good approximation to the original
  two. But it has one flaw: There is no constraint placed on the slopes, and
  (surprisingly) the slopes at the end-points of the above method are not close
  enough to those of the original, and the human eye can now detect the join
  between this generated spline and the two that connect to it.
  <P>
  Generally we will know the slopes at the end points as well as the end points
  themselves.
  <P>
  Let's try another approach, based on better geometry. Givens:
  <UL>
    <LI>
      the start point
    <LI>
      the slope at the start point
    <LI>
      the end point
    <LI>
      the slope at the end point
  </UL>
  <P>
  We want to find the two control points. Now it may seem that specifying the
  slope specifies the control point but this is not so, it merely specifies
  the direction in which the control point lies. The control point may be anywhere
  along the line through the start point in that direction, and each position
  will give a different curve.
  <P>
  So we can express the control point by saying it is CP<SUB>0</SUB> =
  P<SUB>0</SUB> + r<SUB>0</SUB>
  <IMG src="delta0.png" width="28" height="28" align="top"> where
  <IMG src="delta0.png" width="28" height="28" align="top"> is a vector in
  the direction of the slope, and r<SUB>0</SUB> is the distance in that direction.
  Similarly for the end point: CP<SUB>1</SUB> = P<SUB>1</SUB> + r<SUB>1</SUB>
  <IMG src="delta1.png" width="28" height="28" align="top">
  <P>
  We want to find r<SUB>0</SUB> and r<SUB>1</SUB>.
  <P>
  Converting from bezier control points into a polynomial gives us<BR/>
  S(t) = a*t<SUP>3</SUP> + b*t<SUP>2</SUP> + c*t + d
  <UL>
    <LI>
      d = P<SUB>0</SUB>
    <LI>
      c = 3*(CP<SUB>0</SUB> - P<SUB>0</SUB>)
    <LI>
      b = 3*(CP<SUB>1</SUB> - CP<SUB>0</SUB>) - c
    <LI>
      a = P<SUB>1</SUB>-P<SUB>0</SUB> - c - b
  </UL>
  <P>
  Substituting we get
  <UL>
    <LI>
      d = P<SUB>0</SUB>
    <LI>
      c =
      3*r<SUB>0</SUB>*<IMG src="delta0.png" width="28" height="28" align="top">
    <LI>
      b =
      3*(P<SUB>1</SUB>-P<SUB>0</SUB>+r<SUB>1</SUB>*<IMG src="delta1.png" width="28"
	  height="28" align="top">-2*r<SUB>0</SUB><IMG src="delta0.png" width="28"
	  height="28" align="top">)
    <LI>
      a = 2*(P<SUB>0</SUB>-P<SUB>1</SUB>) +
      3*(r<SUB>0</SUB><IMG src="delta0.png" width="28" height="28" align="top">
      - r<SUB>1</SUB>*<IMG src="delta1.png" width="28" height="28" align="top">)
  </UL>
  <P>
  For least squares we want to minimize
  <IMG src="Sigma13x16.png" width="13" height="16">(S(t<SUB>i</SUB>) -
  P<SUB>i</SUB>)<SUP>2</SUP>.<BR/>
  taking derivatives with both r0 and r1 we get:
  <TABLE>
    <TR>
      <TD>&nbsp; &nbsp; &nbsp; &nbsp;</TD>
      <TD><IMG src="Sigma28x33.png" width="28" height="33"></TD>
      <TD colspan="3">2* (3*t<SUP>3</SUP> - 6*t<SUP>2</SUP> +
	3*t)*<IMG src="delta0.png" width="28" height="28" align="top">*[
	S(t<SUB>i</SUB>) - P<SUB>i</SUB>] = 0</TD>
    </TR>
    <TR>
      <TD>&nbsp; &nbsp; &nbsp; &nbsp;</TD>
      <TD><IMG src="Sigma28x33.png" width="28" height="33"></TD>
      <TD colspan="3">2* (-3*t<SUP>3</SUP> +
	3*t<SUP>2</SUP>)*<IMG src="delta1.png" width="28" height="28" align="top">*[
	S(t<SUB>i</SUB>) - P<SUB>i</SUB>] = 0</TD>
      <TD colspan="5" align="center">dividing by constants and substituting, we
	get</TD>
      <TD>&nbsp; &nbsp; &nbsp; &nbsp;</TD>
      <TD><IMG src="Sigma28x33.png" width="28" height="33"></TD>
      <TD>(3*t<SUP>3</SUP> - 6*t<SUP>2</SUP> + 3*t)*[</TD>
      <TD>P<SUB>0</SUB> - P<SUB>i</SUB> + 3 *
	(P<SUB>1</SUB>-P<SUB>0</SUB>*t<SUP>2</SUP> + 2 * (P<SUB>0</SUB> -
	P<SUB>1</SUB>)*t<SUP>3</SUP> +<BR>
	<IMG src="delta0.png" width="28" height="28" align="top">*(3*t -
	6*t<SUP>2</SUP> + 3*t<SUP>3</SUP>) * r<SUB>0</SUB> + <BR>
	<IMG src="delta1.png" width="28" height="28" align="top">*(3*t<SUP>2</SUP>
	- 3*t<SUP>3</SUP>) * r<SUB>1</SUB> +</TD>
      <TD>] = 0</TD>
      <TD>&nbsp; &nbsp; &nbsp; &nbsp;</TD>
      <TD><IMG src="Sigma28x33.png" width="28" height="33"></TD>
      <TD>(-3*t<SUP>3</SUP> + 3*t<SUP>2</SUP>)*[</TD>
      <TD>P<SUB>0</SUB> - P<SUB>i</SUB> + 3 *
	(P<SUB>1</SUB>-P<SUB>0</SUB>*t<SUP>2</SUP> + 2 * (P<SUB>0</SUB> -
	P<SUB>1</SUB>)*t<SUP>3</SUP> +<BR>
	<IMG src="delta0.png" width="28" height="28" align="top">*(3*t -
	6*t<SUP>2</SUP> + 3*t<SUP>3</SUP>) * r<SUB>0</SUB> + <BR>
	<IMG src="delta1.png" width="28" height="28" align="top">*(3*t<SUP>2</SUP>
	- 3*t<SUP>3</SUP>) * r<SUB>1</SUB> +</TD>
      <TD>] = 0</TD>
    </TR>
  </TABLE>
  <P>
  Again we have two linear equations in two unknowns (r0, and r1), and (after
  a lot of algebraic grubbing) we can solve for them. One interesting thing
  here is that the x and y terms do not separate but must be summed together.
  <H3>
    Singular matrices
  </H3>
  <P>
  Very occasionally, a singular matrix will pop out of these equations. Then
  what I do is calculate the slope vectors at the endpoints and then try many
  reasonable lengths for those vectors and see which yields the best approximation
  to the original curve (this gives us our new control points).
  <P>
  This is very, very slow. 
    <HR>
  <H4>
    <SUP><A NAME="guess-t">1</A></SUP>Guessing values for t
  </H4>
  <P>
  FontForge approximates the lengths of the two splines being merged. If
  Point<SUB>i </SUB>= Spline1(old-t<SUB>i</SUB>), then we approximate ti by<BR>
  &nbsp; &nbsp; t<SUB>i</SUB> = old-t<SUB>i</SUB>
  *len(spline1)/(len(spline1)+len(spline2)<BR>
  and if Point<SUB>i </SUB>= Spline2(old-t<SUB>i</SUB>)<BR>
  &nbsp; &nbsp; t<SUB>i</SUB> = len(spline1)/(len(spline1)+len(spline2) +
  old-t<SUB>i</SUB> *len(spline2)/(len(spline1)+len(spline2)<BR>
  That is we do a linear interpolation of t based on the relative lengths of
  the two splines.
  <P>
    <HR>
  <H2>
    Calculating the outline of a <A NAME="Stroke">stroked</A> path
  </H2>
  <H3>
    A circular pen
  </H3>
  <P>
  PostScript supports several variants on the theme of a circular pen, and
  FontForge tries to emulate them all. Basically PostScript "stroke"s a path
  at a certain width by:
  <P>
  at every location on the curve<BR>
  &nbsp; &nbsp; find the normal vector at that location<BR>
  &nbsp; &nbsp; find the two points which are width/2 away from the curve<BR>
  &nbsp; &nbsp; filling in between those two points<BR>
  end
  <P>
  This is essentially what a circular pen does. The only aberrations appear
  at the end-points of a contour, or at points where two splines join but their
  slopes are not continuous. PostScript allows the user to specify the behavior
  at joints and at end-points.
  <P>
  &nbsp; &nbsp; <IMG SRC="expand-pre.png" WIDTH="126" HEIGHT="86" ALIGN="Middle">
  =&gt; <IMG SRC="expand-post.png" WIDTH="131" HEIGHT="91" ALIGN="Middle">
  <P>
  FontForge can't deal with an infinite number of locations, so it samples
  the curve (approximately every em unit), and finds the two normal points.
  These are on the edge of the area to be stroked, so FontForge can approximate
  new contours from these edge points (using the <A href="#Approximating">above
  algorithm</A>).
  <P>
  PostScript pens can end in
  <UL>
    <LI>
      A flat edge -- this is easy, we just draw a line from the end of one spline
      to the end of the other
    <LI>
      A rounded edge -- here we just draw a semi-circle (making sure it goes in
      the right direction).
    <LI>
      A butt edge -- just draw lines continuing the two splines, moving with the
      same slope and width/2 units long, and then join those end-points with a
      straight line.
  </UL>
  <P>
  Things are a bit more complex at a joint
  <IMG SRC="expand-joint-pre.png" WIDTH="61" HEIGHT="78" ALIGN="Middle"> =&gt;
  <IMG SRC="expand-joint-post.png" WIDTH="69" HEIGHT="80" ALIGN="Middle">,
  the green lines in the right image show where the path would have gone had
  it not been constrained by a joint, so on the inside of the joint FontForge
  must figure out where this intersection occurs. While on the outside FontForge
  must figure out either a round, miter or bevelled edge.
  <P>
  Unfortunately, the normal points are not always on the edge of the filled
  region. If the curve makes a sharp bend, then one of the normal points may
  end up inside the pen when it is centered somewhere else on the original
  contour (similar to the case of a joint above).
  <P>
  So FontForge makes another pass through the edge points and figures out which
  ones are actually internal points. After that it will approximate contours.
  <P>
  Now if we start with an open contour, (a straight line, for example) then
  we will end up with one closed contour. While if we start with a closed contour
  we will end up with two closed contours (one on the inside, and one on the
  outside). Unless there are places where the curve doubles back on itself,
  then when can get arbetrarily many closed contours.
  <H3>
    An elliptical pen
  </H3>
  <P>
  This is really just the same as a circular pen. Let us say we want an ellipse
  which is twice as wide as it is high. Then before stroking the path, let's
  scale it to 50% in the horizontal direction, then stroke it with a circular
  pen, and then scale it back by 200% horizontally. The result will be as if
  we had used an elliptical pen.
  <P>
  Obviously if the ellipse is at an angle to the glyph's axes, we must apply
  a more complicated transformation which involves both rotation and scaling.
  <H3>
    A rectangular pen (a calligraphic pen)
  </H3>
  <P>
  Things are subtly different between a rectangular pen and a circular pen.
  We can no longer just find the points which are a given distance away and
  normal to the curve. Except where the spline is parallel to one edge of the
  pen, a the outer contour of a rectangular pen will be stroked by one of its
  end-points. So all we need do is figure out where a spline is parallel to
  the pen's sides, and look at the problem in little chunks between those difficult
  points.
  <P>
  If we are between difficult points then life is very simple indeed. The edge
  will always be stroked by the same end-point, which is a fixed distance from
  the center of the pen, so all we need to do is translate the original spline
  by this distance (and then fix it up so that t goes from [0,1], but that's
  another easy transformation).
  <P>
  When we reach a point where the spline's slope is parallel to one edge of
  the pen, then on the outside path we draw a copy of that edge of of the pen,
  and on the inside edge we calculate a join as above.
  <H3>
    An arbitrary convex polygonal pen
  </H3>
  <P>
  The same method which works for a rectangle can be extended without too much
  difficulty to any convex polygon. (MetaFont fonts can be drawn with such
  a pen. I don't know if any are)
  <H3>
    A pen of variable width
  </H3>
  <P>
  <!--If you have a wacom tablet then FontForge also supports variable width
  pens.
  Extending the above algorithms is fairly simple.-->FontForge does not currently
  support this (some of the assumptions behind this algorithm are broken if
  the pen changes shape too rapidly).
  <H3>
    A pen at a varying angle
  </H3>
  <P>
  FontForge does not support this.
  <P>
</DIV>
</BODY></HTML>