Sophie

Sophie

distrib > Mageia > 5 > i586 > by-pkgid > 37ce2601040f8edc2329d4714238376a > files > 4043

eso-midas-doc-13SEPpl1.2-3.mga5.i586.rpm

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.1p1 release (March 2nd, 1998)
originally by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Tikhonov's regularization and multiresolution analysis</TITLE>
<META NAME="description" CONTENT="Tikhonov's regularization and multiresolution analysis">
<META NAME="keywords" CONTENT="vol2">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="vol2.css">
<LINK REL="next" HREF="node339.html">
<LINK REL="previous" HREF="node337.html">
<LINK REL="up" HREF="node335.html">
<LINK REL="next" HREF="node339.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html5661"
 HREF="node339.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="icons.gif/next_motif.gif"></A> 
<A NAME="tex2html5658"
 HREF="node335.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="icons.gif/up_motif.gif"></A> 
<A NAME="tex2html5652"
 HREF="node337.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="icons.gif/previous_motif.gif"></A> 
<A NAME="tex2html5660"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="icons.gif/contents_motif.gif"></A>  
<BR>
<B> Next:</B> <A NAME="tex2html5662"
 HREF="node339.html">Regularization from significant structures</A>
<B> Up:</B> <A NAME="tex2html5659"
 HREF="node335.html">Deconvolution</A>
<B> Previous:</B> <A NAME="tex2html5653"
 HREF="node337.html">Regularization in the wavelet</A>
<BR>
<BR>
<!--End of Navigation Panel-->

<H2><A NAME="SECTION002083000000000000000">&#160;</A>
<A NAME="direct_dec">&#160;</A>
<BR>
Tikhonov's regularization and multiresolution analysis
</H2>
If <I>w</I><SUB><I>j</I></SUB><SUP>(<I>I</I>)</SUP> are the wavelet coefficients of 
the image <I>I</I> at the scale j, we have:
<BR>
<DIV ALIGN="CENTER"><A NAME="eq_cpphi">&#160;</A>
<!-- MATH: \begin{eqnarray}
\hat{w}_j^{(I)}(u,v) & = & \hat{g}(2^{j-1}u, 2^{j-1}v)
\prod_{i=j-2}^{i=0}\hat{h}(2^{i}u, 2^{i}v) \hat{I}(u,v)
      \nonumber \\& = & {\hat{\psi}(2^{j}u, 2^{j}v) \over
      \hat{\phi}(u,v)} \hat{P}(u,v) \hat{O}(u,v) \\& = &
      \hat{w}_j^{(P)} \hat{O}(u,v) \nonumber
\end{eqnarray} -->

<TABLE ALIGN="CENTER" CELLPADDING="0" WIDTH="100%">
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
 WIDTH="95" HEIGHT="58" ALIGN="MIDDLE" BORDER="0"
 SRC="img843.gif"
 ALT="$\displaystyle \hat{w}_j^{(I)}(u,v)$"></TD>
<TD ALIGN="CENTER" NOWRAP>=</TD>
<TD ALIGN="LEFT" NOWRAP><IMG
 WIDTH="366" HEIGHT="87" ALIGN="MIDDLE" BORDER="0"
 SRC="img844.gif"
 ALT="$\displaystyle \hat{g}(2^{j-1}u, 2^{j-1}v)
\prod_{i=j-2}^{i=0}\hat{h}(2^{i}u, 2^{i}v) \hat{I}(u,v)$"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
&nbsp;</TD></TR>
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT">&nbsp;</TD>
<TD ALIGN="CENTER" NOWRAP>=</TD>
<TD ALIGN="LEFT" NOWRAP><IMG
 WIDTH="250" HEIGHT="83" ALIGN="MIDDLE" BORDER="0"
 SRC="img845.gif"
 ALT="$\displaystyle {\hat{\psi}(2^{j}u, 2^{j}v) \over
\hat{\phi}(u,v)} \hat{P}(u,v) \hat{O}(u,v)$"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(14.106)</TD></TR>
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT">&nbsp;</TD>
<TD ALIGN="CENTER" NOWRAP>=</TD>
<TD ALIGN="LEFT" NOWRAP><IMG
 WIDTH="117" HEIGHT="58" ALIGN="MIDDLE" BORDER="0"
 SRC="img846.gif"
 ALT="$\displaystyle \hat{w}_j^{(P)} \hat{O}(u,v)$"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
&nbsp;</TD></TR>
</TABLE></DIV>
<BR CLEAR="ALL"><P></P>
where 
<!-- MATH: $w_{j}^{(P)}$ -->
<I>w</I><SUB><I>j</I></SUB><SUP>(<I>P</I>)</SUP> are the wavelet coefficients of the PSF at the scale <I>j</I>.
The wavelet coefficients of the image <I>I</I> are the product of convolution
of object <I>O</I> by the  wavelet coefficients of the PSF.

<P>
To deconvolve the image, we have to minimize for each scale j:
<BR>
<DIV ALIGN="CENTER"><A NAME="eqn_min1">&#160;</A>
<!-- MATH: \begin{eqnarray}
\parallel {\hat \psi(2^ju, 2^jv)\over \hat\phi(u, v)} \hat P(u,v) \hat O(u,v)  - \hat w_j^{(I)}(u,v)\parallel^2
\end{eqnarray} -->

<TABLE ALIGN="CENTER" CELLPADDING="0" WIDTH="100%">
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
 WIDTH="410" HEIGHT="83" ALIGN="MIDDLE" BORDER="0"
 SRC="img847.gif"
 ALT="$\displaystyle \parallel {\hat \psi(2^ju, 2^jv)\over \hat\phi(u, v)} \hat P(u,v) \hat O(u,v) - \hat w_j^{(I)}(u,v)\parallel^2$"></TD>
<TD>&nbsp;</TD>
<TD>&nbsp;</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(14.107)</TD></TR>
</TABLE></DIV>
<BR CLEAR="ALL"><P></P>
and for the plane at the lower resolution:
<BR>
<DIV ALIGN="CENTER"><A NAME="eqn_min2">&#160;</A>
<!-- MATH: \begin{eqnarray}
\parallel {\hat \phi(2^{n-1}u, 2^{n-1}v)\over \hat\phi(u, v)} \hat P(u,v) \hat O(u,v)  - \hat  c_{n-1}^{(I)}(u,v)\parallel^2
\end{eqnarray} -->

<TABLE ALIGN="CENTER" CELLPADDING="0" WIDTH="100%">
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
 WIDTH="461" HEIGHT="83" ALIGN="MIDDLE" BORDER="0"
 SRC="img848.gif"
 ALT="$\displaystyle \parallel {\hat \phi(2^{n-1}u, 2^{n-1}v)\over \hat\phi(u, v)} \hat P(u,v) \hat O(u,v) - \hat c_{n-1}^{(I)}(u,v)\parallel^2$"></TD>
<TD>&nbsp;</TD>
<TD>&nbsp;</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(14.108)</TD></TR>
</TABLE></DIV>
<BR CLEAR="ALL"><P></P><I>n</I> being the number of planes of the wavelet transform ((<I>n</I>-1) wavelet
coefficient planes and one plane for the image at the lower resolution).
The problem has not generally a unique solution, and we need to do
a regularization [<A
 HREF="node370.html#tikhonov">40</A>]. At each scale, we add the term:
<BR>
<DIV ALIGN="CENTER"><A NAME="eqn_min3">&#160;</A>
<!-- MATH: \begin{eqnarray}
\gamma_j \parallel  w_j^{(O)} \parallel^2 \mbox{ min }
\end{eqnarray} -->

<TABLE ALIGN="CENTER" CELLPADDING="0" WIDTH="100%">
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
 WIDTH="175" HEIGHT="58" ALIGN="MIDDLE" BORDER="0"
 SRC="img849.gif"
 ALT="$\displaystyle \gamma_j \parallel w_j^{(O)} \parallel^2 \mbox{ min }$"></TD>
<TD>&nbsp;</TD>
<TD>&nbsp;</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(14.109)</TD></TR>
</TABLE></DIV>
<BR CLEAR="ALL"><P></P>
This is a smoothness constraint. We want to have the minimum information 
in the restored object. From equations <A HREF="node338.html#eqn_min1">14.107</A>, <A HREF="node338.html#eqn_min2">14.108</A>,
 <A HREF="node338.html#eqn_min3">14.109</A>, we find:
<BR>
<DIV ALIGN="CENTER">

<!-- MATH: \begin{eqnarray}
\hat D(u,v) \hat O(u,v) = \hat N(u,v)
\end{eqnarray} -->

<TABLE ALIGN="CENTER" CELLPADDING="0" WIDTH="100%">
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
 WIDTH="243" HEIGHT="52" ALIGN="MIDDLE" BORDER="0"
 SRC="img850.gif"
 ALT="$\displaystyle \hat D(u,v) \hat O(u,v) = \hat N(u,v)$"></TD>
<TD>&nbsp;</TD>
<TD>&nbsp;</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(14.110)</TD></TR>
</TABLE></DIV>
<BR CLEAR="ALL"><P></P>
with:
<BR><P></P>
<DIV ALIGN="CENTER">
<IMG
 WIDTH="712" HEIGHT="64"
 SRC="img851.gif"
 ALT="\begin{eqnarray*}\hat D(u,v) = \sum_j \mid \hat\psi(2^ju, 2^jv) \mid^2 (\mid\hat...
... \gamma_j) + \mid \hat \phi(2^{n-1}u,2^{n-1}v)\hat P(u,v) \mid^2
\end{eqnarray*}">
</DIV><P></P>
<BR CLEAR="ALL"> 
and:
<BR><P></P>
<DIV ALIGN="CENTER">
<IMG
 WIDTH="742" HEIGHT="64"
 SRC="img852.gif"
 ALT="\begin{eqnarray*}\hat N(u,v) = \hat\phi(u, v) [ \sum_j \hat P^*(u,v)\hat\psi^*(2...
... \hat P^*(u,v) \hat\phi^*(2^{n-1}u,2^{n-1}v) \hat c_{n-1}^{(I)}]
\end{eqnarray*}">
</DIV><P></P>
<BR CLEAR="ALL"> 
if the equation is well constrained, the object can be computed by a 
simple division of <IMG
 WIDTH="25" HEIGHT="27" ALIGN="BOTTOM" BORDER="0"
 SRC="img853.gif"
 ALT="$\hat N$">
by  <IMG
 WIDTH="25" HEIGHT="27" ALIGN="BOTTOM" BORDER="0"
 SRC="img854.gif"
 ALT="$\hat D$">.
An iterative algorithm 
can be used to do this inversion if we want to add other constraints such as
 positivity. We have in fact a multiresolution Tikhonov's regularization.
This method has the advantage to furnish a solution quickly, but 
optimal regularization parameters <IMG
 WIDTH="25" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
 SRC="img855.gif"
 ALT="$\gamma_j$">
cannot be found directly,
and several tests are generally necessary before finding an acceptable
solution. Hovewer, the method can be interesting if we need to deconvolve
a big number of images with the same noise characteristics. In this case,
parameters have to be determined only the first time. In a general way,
we prefer to use one of the following iterative algorithms.

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html5661"
 HREF="node339.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="icons.gif/next_motif.gif"></A> 
<A NAME="tex2html5658"
 HREF="node335.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="icons.gif/up_motif.gif"></A> 
<A NAME="tex2html5652"
 HREF="node337.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="icons.gif/previous_motif.gif"></A> 
<A NAME="tex2html5660"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="icons.gif/contents_motif.gif"></A>  
<BR>
<B> Next:</B> <A NAME="tex2html5662"
 HREF="node339.html">Regularization from significant structures</A>
<B> Up:</B> <A NAME="tex2html5659"
 HREF="node335.html">Deconvolution</A>
<B> Previous:</B> <A NAME="tex2html5653"
 HREF="node337.html">Regularization in the wavelet</A>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Petra Nass</I>
<BR><I>1999-06-15</I>
</ADDRESS>
</BODY>
</HTML>