Sophie

Sophie

distrib > Mageia > 5 > i586 > by-pkgid > 37ce2601040f8edc2329d4714238376a > files > 3928

eso-midas-doc-13SEPpl1.2-3.mga5.i586.rpm

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.1p1 release (March 2nd, 1998)
originally by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Sampling patterns</TITLE>
<META NAME="description" CONTENT="Sampling patterns">
<META NAME="keywords" CONTENT="vol2">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="vol2.css">
<LINK REL="previous" HREF="node233.html">
<LINK REL="up" HREF="node231.html">
<LINK REL="next" HREF="node235.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4324"
 HREF="node235.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="icons.gif/next_motif.gif"></A> 
<A NAME="tex2html4321"
 HREF="node231.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="icons.gif/up_motif.gif"></A> 
<A NAME="tex2html4317"
 HREF="node233.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="icons.gif/previous_motif.gif"></A> 
<A NAME="tex2html4323"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="icons.gif/contents_motif.gif"></A>  
<BR>
<B> Next:</B> <A NAME="tex2html4325"
 HREF="node235.html">MIDAS utilities for time</A>
<B> Up:</B> <A NAME="tex2html4322"
 HREF="node231.html">Fourier analysis: The sine</A>
<B> Previous:</B> <A NAME="tex2html4318"
 HREF="node233.html">The power spectrum and</A>
<BR>
<BR>
<!--End of Navigation Panel-->

<H2><A NAME="SECTION001733000000000000000">
Sampling patterns</A>
</H2> 

<P>
The effect of a certain sampling pattern in the frequency analysis is
particularly transparent for the power spectrum. Let <I>s</I> be the
sampling function taking on the value 1 at the (unevenly spaced) times
of the observations observation and 0 elsewhere.  The power spectrum of
the sampling function
<BR>
<DIV ALIGN="CENTER">

<!-- MATH: \begin{eqnarray}
W(\nu) & = & |{\cal F}s|^2
\end{eqnarray} -->

<TABLE ALIGN="CENTER" CELLPADDING="0" WIDTH="100%">
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
 WIDTH="12" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
 SRC="img514.gif"
 ALT="$\displaystyle W(\nu)$"></TD>
<TD ALIGN="CENTER" NOWRAP>=</TD>
<TD ALIGN="LEFT" NOWRAP><IMG
 WIDTH="11" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
 SRC="img515.gif"
 ALT="$\displaystyle \vert{\cal F}s\vert^2$"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(12.11)</TD></TR>
</TABLE></DIV>
<BR CLEAR="ALL"><P></P>
is an ordinary, non-random function called the spectral window
function. The discrete observations are the product of <I>s</I> and the
model function <I>f</I>: <I>x</I> = <I>s f</I> so that their transform is a convolution
of transforms: 
<!-- MATH: ${\cal F}x = [{\cal F}s]*[{\cal F}f]\equiv S*F$ -->
<IMG
 WIDTH="204" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
 SRC="img516.gif"
 ALT="${\cal F}x = [{\cal F}s]*[{\cal F}f]\equiv S*F$">,
where

<!-- MATH: $S\equiv{\cal F}s$ -->
<IMG
 WIDTH="33" HEIGHT="20" ALIGN="BOTTOM" BORDER="0"
 SRC="img517.gif"
 ALT="$S\equiv{\cal F}s$">
and 
<!-- MATH: $F={\cal F}f$ -->
<IMG
 WIDTH="38" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img518.gif"
 ALT="$F={\cal F}f$">.
For

<!-- MATH: $f=A\cos{2\pi\lambda{t}}\equiv
A(e^{+2\pi\lambda{t}}+e^{-2\pi\lambda{t}})/2$ -->
<IMG
 WIDTH="330" HEIGHT="47" ALIGN="MIDDLE" BORDER="0"
 SRC="img519.gif"
 ALT="$f=A\cos{2\pi\lambda{t}}\equiv
A(e^{+2\pi\lambda{t}}+e^{-2\pi\lambda{t}})/2$">
and 
<!-- MATH: $F={\cal F}f =
A(\delta_{+\nu}+\delta_{-\nu})/2$ -->
<IMG
 WIDTH="214" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
 SRC="img520.gif"
 ALT="$F={\cal F}f =
A(\delta_{+\nu}+\delta_{-\nu})/2$">
we obtain the result 
<!-- MATH: ${\cal F}x =
A(S(\nu-\lambda)+S(\nu+\lambda))/2$ -->
<IMG
 WIDTH="269" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
 SRC="img521.gif"
 ALT="${\cal F}x =
A(S(\nu-\lambda)+S(\nu+\lambda))/2$">.
Because of the linearity of
<IMG
 WIDTH="48" HEIGHT="54" ALIGN="BOTTOM" BORDER="0"
 SRC="img522.gif"
 ALT="${\cal F}$">
our result extends to any combination of frequencies.
Taking the square modulus of the result equation, we obtain both
squared and mixed terms. The mixed terms

<!-- MATH: $S(\nu+\lambda_k)S(\nu+\lambda_j)$ -->
<IMG
 WIDTH="146" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
 SRC="img523.gif"
 ALT="$S(\nu+\lambda_k)S(\nu+\lambda_j)$">
correspond to an interference of
frequencies <IMG
 WIDTH="52" HEIGHT="72" ALIGN="MIDDLE" BORDER="0"
 SRC="img524.gif"
 ALT="$\lambda_k$">
and <IMG
 WIDTH="52" HEIGHT="72" ALIGN="MIDDLE" BORDER="0"
 SRC="img525.gif"
 ALT="$\lambda_j$">
differing by either sign or
absolute value. Therefore, <EM>if interference between frequencies is
small, the power spectrum reduces to the sum of the window functions
shifted in frequency:</EM>
<BR>
<DIV ALIGN="CENTER">

<!-- MATH: \begin{eqnarray}
P(\nu) & \approx &
\sum |[{\cal F}s](\nu+\lambda_k)|^2 \equiv \sum W(\nu+\lambda_k)
\end{eqnarray} -->

<TABLE ALIGN="CENTER" CELLPADDING="0" WIDTH="100%">
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
 WIDTH="6" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
 SRC="img526.gif"
 ALT="$\displaystyle P(\nu)$"></TD>
<TD ALIGN="CENTER" NOWRAP><IMG
 WIDTH="46" HEIGHT="54" ALIGN="BOTTOM" BORDER="0"
 SRC="img527.gif"
 ALT="$\textstyle \approx$"></TD>
<TD ALIGN="LEFT" NOWRAP><IMG
 WIDTH="296" HEIGHT="54" ALIGN="MIDDLE" BORDER="0"
 SRC="img528.gif"
 ALT="$\displaystyle \sum \vert[{\cal F}s](\nu+\lambda_k)\vert^2 \equiv \sum W(\nu+\lambda_k)$"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
(12.12)</TD></TR>
</TABLE></DIV>
<BR CLEAR="ALL"><P></P> 

<P>
In the opposite case of strong interference, ghost patterns may arise
in the power spectrum due to interference of window function patterns
belonging to positive as well as negative frequencies. The ghost
patterns produced at frequencies nearby or far from the true frequency
are called <EM>aliases</EM> and <EM>power leaks</EM>, respectively.
 
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4324"
 HREF="node235.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="icons.gif/next_motif.gif"></A> 
<A NAME="tex2html4321"
 HREF="node231.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="icons.gif/up_motif.gif"></A> 
<A NAME="tex2html4317"
 HREF="node233.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="icons.gif/previous_motif.gif"></A> 
<A NAME="tex2html4323"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="icons.gif/contents_motif.gif"></A>  
<BR>
<B> Next:</B> <A NAME="tex2html4325"
 HREF="node235.html">MIDAS utilities for time</A>
<B> Up:</B> <A NAME="tex2html4322"
 HREF="node231.html">Fourier analysis: The sine</A>
<B> Previous:</B> <A NAME="tex2html4318"
 HREF="node233.html">The power spectrum and</A>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Petra Nass</I>
<BR><I>1999-06-15</I>
</ADDRESS>
</BODY>
</HTML>