Sophie

Sophie

distrib > Mageia > 5 > i586 > by-pkgid > 37ce2601040f8edc2329d4714238376a > files > 3919

eso-midas-doc-13SEPpl1.2-3.mga5.i586.rpm

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 98.1p1 release (March 2nd, 1998)
originally by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Corrections to the probability distribution</TITLE>
<META NAME="description" CONTENT="Corrections to the probability distribution">
<META NAME="keywords" CONTENT="vol2">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<LINK REL="STYLESHEET" HREF="vol2.css">
<LINK REL="next" HREF="node227.html">
<LINK REL="previous" HREF="node225.html">
<LINK REL="up" HREF="node222.html">
<LINK REL="next" HREF="node227.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A NAME="tex2html4237"
 HREF="node227.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="icons.gif/next_motif.gif"></A> 
<A NAME="tex2html4234"
 HREF="node222.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="icons.gif/up_motif.gif"></A> 
<A NAME="tex2html4228"
 HREF="node225.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="icons.gif/previous_motif.gif"></A> 
<A NAME="tex2html4236"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="icons.gif/contents_motif.gif"></A>  
<BR>
<B> Next:</B> <A NAME="tex2html4238"
 HREF="node227.html">Power of test statistics</A>
<B> Up:</B> <A NAME="tex2html4235"
 HREF="node222.html">Basic principles of time</A>
<B> Previous:</B> <A NAME="tex2html4229"
 HREF="node225.html">Test statistics</A>
<BR>
<BR>
<!--End of Navigation Panel-->

<H2><A NAME="SECTION001724000000000000000">&#160;</A><A NAME="s:corr">&#160;</A>
<BR>
Corrections to the probability distribution
</H2>

<P>
In principle, it is possible to compute a value of the statistic
<IMG
 WIDTH="13" HEIGHT="42" ALIGN="MIDDLE" BORDER="0"
 SRC="img461.gif"
 ALT="$S(\nu_1)$">
for a single frequency <IMG
 WIDTH="50" HEIGHT="70" ALIGN="MIDDLE" BORDER="0"
 SRC="img462.gif"
 ALT="$\nu_1$">
and to test its consistency
with a random signal (<I>H</I><SUB><I>o</I></SUB>). The common procedure of inspecting the
whole periodogram for a detected signal corresponds to the <I>N</I>-fold
repetition of the single test for a set of trial frequencies, 
<!-- MATH: $\nu_n,
n=1,\dots,N$ -->
<IMG
 WIDTH="115" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
 SRC="img463.gif"
 ALT="$\nu_n,
n=1,\dots,N$">.
The probability of the whole periodogram being
consistent with <I>H</I><SUB><I>o</I></SUB> is 
<!-- MATH: $1-(1-p)^N \rightarrow Np$ -->
<IMG
 WIDTH="144" HEIGHT="49" ALIGN="MIDDLE" BORDER="0"
 SRC="img464.gif"
 ALT="$1-(1-p)^N \rightarrow Np$">
for 
<!-- MATH: $p\rightarrow
0$ -->
<IMG
 WIDTH="17" HEIGHT="38" ALIGN="MIDDLE" BORDER="0"
 SRC="img465.gif"
 ALT="$p\rightarrow
0$">.
The factor <I>N</I> means that there is an increased probability of
accepting a given value of the statistic as consistent with a random
signal.  Therefore, increasing the number of trial frequencies
decreases the sensitivity for the detection of a significant signal
and accordingly is called the penalty factor for multiple trials or
for the frequency bandwidth used. The true number of independent
frequencies, <I>N</I><SUB><I>t</I></SUB>, remains generally unknown.  It is usually less than the
number of resolved frequencies 
<!-- MATH: $N_r=\Delta\nu \Delta t$ -->
<IMG
 WIDTH="72" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
 SRC="img466.gif"
 ALT="$N_r=\Delta\nu \Delta t$">
(Sect.
<A HREF="node232.html#s:iftr">12.3.1</A>) because of aliasing and still less than the number of
computed frequencies <I>N</I><SUB><I>c</I></SUB>, because of oversampling: 
<!-- MATH: $N_t \le N_r \le
N_c$ -->
<IMG
 WIDTH="96" HEIGHT="39" ALIGN="MIDDLE" BORDER="0"
 SRC="img467.gif"
 ALT="$N_t \le N_r \le
N_c$">.
For a practical and conservative estimate, we recommend to use
<I>N</I><SUB><I>r</I></SUB> as the number of trial frequencies, <I>N</I>.

<P>
According to the standard null hypothesis, <I>H</I><SUB><I>o</I></SUB>, the noise is white
noise.  This is not the case in many practical cases. For instance,
often the noise is a stochastic process with a certain correlation
length 
<!-- MATH: $l_{corr}>0$ -->
<I>l</I><SUB><I>corr</I></SUB>&gt;0, so that on average <I>n</I><SUB><I>corr</I></SUB> consecutive
observations are correlated.  Such noise corresponds to white noise
passed through a low pass filter which cuts off all frequencies above

<!-- MATH: $1/l_{corr}$ -->
1/<I>l</I><SUB><I>corr</I></SUB>.  Such correlation is not usually taken into account by
standard test statistics.  The effect of this correlation is to reduce
the effective number of observations by a factor <I>n</I><SUB><I>corr</I></SUB>(Schwarzenberg-Czerny, 1989). This has to be accounted for by scaling
both the statistics <I>S</I> and the number of its degrees of freedom <I>n</I><SUB><I>j</I></SUB>by factors depending on <I>n</I><SUB><I>corr</I></SUB>. 

<P>
In the test statistic, a continuum level which is inconsistent with
the expected value of the statistic <IMG
 WIDTH="14" HEIGHT="44" ALIGN="MIDDLE" BORDER="0"
 SRC="img468.gif"
 ALT="$E\{S\}$">
may indicate the presence
of such a correlation between consecutive data points. A practical
recipe to measure the correlation is to compute the residual time
series (e.g. with the <TT>SINEFIT/TSA</TT> command) and to look for its
correlation length with <TT>COVAR/TSA</TT> command.  The effect of the
correlation in the parameter estimation is an underestimation of the
uncertainties of the parameters; the true variances of the parameters
are a factor <I>n</I><SUB><I>corr</I></SUB> larger than computed.  

<P>
In the command individual descriptions, we often refer to probability
distributions of specific statistics. For the properties of these
individual distributions see e.g. Eadie <EM>et. al.</EM> (1971), Brandt
(1970), and Abramovitz &amp; Stegun (1972).  The two latter references
contain tables. For a computer code for the computation of the
cumulative probabilities see Press <EM>et. al.</EM> (1986).

<P>
<HR>
<!--Navigation Panel-->
<A NAME="tex2html4237"
 HREF="node227.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
 SRC="icons.gif/next_motif.gif"></A> 
<A NAME="tex2html4234"
 HREF="node222.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
 SRC="icons.gif/up_motif.gif"></A> 
<A NAME="tex2html4228"
 HREF="node225.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
 SRC="icons.gif/previous_motif.gif"></A> 
<A NAME="tex2html4236"
 HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="contents"
 SRC="icons.gif/contents_motif.gif"></A>  
<BR>
<B> Next:</B> <A NAME="tex2html4238"
 HREF="node227.html">Power of test statistics</A>
<B> Up:</B> <A NAME="tex2html4235"
 HREF="node222.html">Basic principles of time</A>
<B> Previous:</B> <A NAME="tex2html4229"
 HREF="node225.html">Test statistics</A>
<!--End of Navigation Panel-->
<ADDRESS>
<I>Petra Nass</I>
<BR><I>1999-06-15</I>
</ADDRESS>
</BODY>
</HTML>