Sophie

Sophie

distrib > Scientific%20Linux > 5x > x86_64 > by-pkgid > 27922b4260f65d317aabda37e42bbbff > files > 513

kernel-2.6.18-238.el5.src.rpm

From: Herbert Xu <herbert.xu@redhat.com>
Date: Fri, 26 Oct 2007 17:46:50 +0800
Subject: [crypto] aes: Rename aes to aes-generic
Message-id: 20071026094650.GA29270@gondor.apana.org.au
O-Subject: [RHEL5.2 PATCH] [CRYPTO] aes: Rename aes to aes-generic
Bugzilla: 245954

Hi:

RHEL5.2 BZ 245954

This patch might look big but it's actually only a few lines
if you take out the aes.c => aes_generic.c rename.  In fact
the rename is what makes this patch work as it no longer gives
any special status to the C AES implementation.

By using module aliases for all AES implementation, they will
all get loaded upon the first request.  The one with the highest
will then take over as the default provider of AES operations.

[CRYPTO] aes: Rename aes to aes-generic

Loading the crypto algorithm by the alias instead of by module directly
has the advantage that all possible implementations of this algorithm
are loaded automatically and the crypto API can choose the best one
depending on its priority.

Additionally it ensures that the generic implementation as well as the
HW driver (if available) is loaded in case the HW driver needs the
generic version as fallback in corner cases.

Signed-off-by: Sebastian Siewior <sebastian@breakpoint.cc>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>

Cheers,
--
Visit Openswan at http://www.openswan.org/
Email: Herbert Xu ~{PmV>HI~} <herbert@gondor.apana.org.au>
Home Page: http://gondor.apana.org.au/~herbert/
PGP Key: http://gondor.apana.org.au/~herbert/pubkey.txt
--

Acked-by: James Morris <jmorris@redhat.com>
Acked-by: "David S. Miller" <davem@redhat.com>

diff --git a/arch/s390/crypto/aes_s390.c b/arch/s390/crypto/aes_s390.c
index 5713c7e..0bf0d37 100644
--- a/arch/s390/crypto/aes_s390.c
+++ b/arch/s390/crypto/aes_s390.c
@@ -7,7 +7,7 @@
  *   Copyright (C) 2005 IBM Deutschland GmbH, IBM Corporation
  *   Author(s): Jan Glauber (jang@de.ibm.com)
  *
- * Derived from "crypto/aes.c"
+ * Derived from "crypto/aes_generic.c"
  *
  * This program is free software; you can redistribute it and/or modify it
  * under the terms of the GNU General Public License as published by the Free
diff --git a/crypto/Makefile b/crypto/Makefile
index 37d0f2d..ded7e7b 100644
--- a/crypto/Makefile
+++ b/crypto/Makefile
@@ -20,7 +20,7 @@ obj-$(CONFIG_CRYPTO_DES) += des.o
 obj-$(CONFIG_CRYPTO_BLOWFISH) += blowfish.o
 obj-$(CONFIG_CRYPTO_TWOFISH) += twofish.o
 obj-$(CONFIG_CRYPTO_SERPENT) += serpent.o
-obj-$(CONFIG_CRYPTO_AES) += aes.o
+obj-$(CONFIG_CRYPTO_AES) += aes_generic.o
 obj-$(CONFIG_CRYPTO_CAST5) += cast5.o
 obj-$(CONFIG_CRYPTO_CAST6) += cast6.o
 obj-$(CONFIG_CRYPTO_ARC4) += arc4.o
diff --git a/crypto/aes.c b/crypto/aes.c
deleted file mode 100644
index a038711..0000000
--- a/crypto/aes.c
+++ /dev/null
@@ -1,455 +0,0 @@
-/* 
- * Cryptographic API.
- *
- * AES Cipher Algorithm.
- *
- * Based on Brian Gladman's code.
- *
- * Linux developers:
- *  Alexander Kjeldaas <astor@fast.no>
- *  Herbert Valerio Riedel <hvr@hvrlab.org>
- *  Kyle McMartin <kyle@debian.org>
- *  Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API).
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * ---------------------------------------------------------------------------
- * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
- * All rights reserved.
- *
- * LICENSE TERMS
- *
- * The free distribution and use of this software in both source and binary
- * form is allowed (with or without changes) provided that:
- *
- *   1. distributions of this source code include the above copyright
- *      notice, this list of conditions and the following disclaimer;
- *
- *   2. distributions in binary form include the above copyright
- *      notice, this list of conditions and the following disclaimer
- *      in the documentation and/or other associated materials;
- *
- *   3. the copyright holder's name is not used to endorse products
- *      built using this software without specific written permission.
- *
- * ALTERNATIVELY, provided that this notice is retained in full, this product
- * may be distributed under the terms of the GNU General Public License (GPL),
- * in which case the provisions of the GPL apply INSTEAD OF those given above.
- *
- * DISCLAIMER
- *
- * This software is provided 'as is' with no explicit or implied warranties
- * in respect of its properties, including, but not limited to, correctness
- * and/or fitness for purpose.
- * ---------------------------------------------------------------------------
- */
-
-/* Some changes from the Gladman version:
-    s/RIJNDAEL(e_key)/E_KEY/g
-    s/RIJNDAEL(d_key)/D_KEY/g
-*/
-
-#include <linux/module.h>
-#include <linux/init.h>
-#include <linux/types.h>
-#include <linux/errno.h>
-#include <linux/crypto.h>
-#include <asm/byteorder.h>
-
-#define AES_MIN_KEY_SIZE	16
-#define AES_MAX_KEY_SIZE	32
-
-#define AES_BLOCK_SIZE		16
-
-/*
- * #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) 
- */
-static inline u8
-byte(const u32 x, const unsigned n)
-{
-	return x >> (n << 3);
-}
-
-struct aes_ctx {
-	int key_length;
-	u32 buf[120];
-};
-
-#define E_KEY (&ctx->buf[0])
-#define D_KEY (&ctx->buf[60])
-
-static u8 pow_tab[256] __initdata;
-static u8 log_tab[256] __initdata;
-static u8 sbx_tab[256] __initdata;
-static u8 isb_tab[256] __initdata;
-static u32 rco_tab[10];
-static u32 ft_tab[4][256];
-static u32 it_tab[4][256];
-
-static u32 fl_tab[4][256];
-static u32 il_tab[4][256];
-
-static inline u8 __init
-f_mult (u8 a, u8 b)
-{
-	u8 aa = log_tab[a], cc = aa + log_tab[b];
-
-	return pow_tab[cc + (cc < aa ? 1 : 0)];
-}
-
-#define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)
-
-#define f_rn(bo, bi, n, k)					\
-    bo[n] =  ft_tab[0][byte(bi[n],0)] ^				\
-             ft_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
-             ft_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
-             ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
-
-#define i_rn(bo, bi, n, k)					\
-    bo[n] =  it_tab[0][byte(bi[n],0)] ^				\
-             it_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
-             it_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
-             it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
-
-#define ls_box(x)				\
-    ( fl_tab[0][byte(x, 0)] ^			\
-      fl_tab[1][byte(x, 1)] ^			\
-      fl_tab[2][byte(x, 2)] ^			\
-      fl_tab[3][byte(x, 3)] )
-
-#define f_rl(bo, bi, n, k)					\
-    bo[n] =  fl_tab[0][byte(bi[n],0)] ^				\
-             fl_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
-             fl_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
-             fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
-
-#define i_rl(bo, bi, n, k)					\
-    bo[n] =  il_tab[0][byte(bi[n],0)] ^				\
-             il_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
-             il_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
-             il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
-
-static void __init
-gen_tabs (void)
-{
-	u32 i, t;
-	u8 p, q;
-
-	/* log and power tables for GF(2**8) finite field with
-	   0x011b as modular polynomial - the simplest primitive
-	   root is 0x03, used here to generate the tables */
-
-	for (i = 0, p = 1; i < 256; ++i) {
-		pow_tab[i] = (u8) p;
-		log_tab[p] = (u8) i;
-
-		p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
-	}
-
-	log_tab[1] = 0;
-
-	for (i = 0, p = 1; i < 10; ++i) {
-		rco_tab[i] = p;
-
-		p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
-	}
-
-	for (i = 0; i < 256; ++i) {
-		p = (i ? pow_tab[255 - log_tab[i]] : 0);
-		q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
-		p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
-		sbx_tab[i] = p;
-		isb_tab[p] = (u8) i;
-	}
-
-	for (i = 0; i < 256; ++i) {
-		p = sbx_tab[i];
-
-		t = p;
-		fl_tab[0][i] = t;
-		fl_tab[1][i] = rol32(t, 8);
-		fl_tab[2][i] = rol32(t, 16);
-		fl_tab[3][i] = rol32(t, 24);
-
-		t = ((u32) ff_mult (2, p)) |
-		    ((u32) p << 8) |
-		    ((u32) p << 16) | ((u32) ff_mult (3, p) << 24);
-
-		ft_tab[0][i] = t;
-		ft_tab[1][i] = rol32(t, 8);
-		ft_tab[2][i] = rol32(t, 16);
-		ft_tab[3][i] = rol32(t, 24);
-
-		p = isb_tab[i];
-
-		t = p;
-		il_tab[0][i] = t;
-		il_tab[1][i] = rol32(t, 8);
-		il_tab[2][i] = rol32(t, 16);
-		il_tab[3][i] = rol32(t, 24);
-
-		t = ((u32) ff_mult (14, p)) |
-		    ((u32) ff_mult (9, p) << 8) |
-		    ((u32) ff_mult (13, p) << 16) |
-		    ((u32) ff_mult (11, p) << 24);
-
-		it_tab[0][i] = t;
-		it_tab[1][i] = rol32(t, 8);
-		it_tab[2][i] = rol32(t, 16);
-		it_tab[3][i] = rol32(t, 24);
-	}
-}
-
-#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
-
-#define imix_col(y,x)       \
-    u   = star_x(x);        \
-    v   = star_x(u);        \
-    w   = star_x(v);        \
-    t   = w ^ (x);          \
-   (y)  = u ^ v ^ w;        \
-   (y) ^= ror32(u ^ t,  8) ^ \
-          ror32(v ^ t, 16) ^ \
-          ror32(t,24)
-
-/* initialise the key schedule from the user supplied key */
-
-#define loop4(i)                                    \
-{   t = ror32(t,  8); t = ls_box(t) ^ rco_tab[i];    \
-    t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
-    t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
-    t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
-    t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
-}
-
-#define loop6(i)                                    \
-{   t = ror32(t,  8); t = ls_box(t) ^ rco_tab[i];    \
-    t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
-    t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
-    t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
-    t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
-    t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
-    t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
-}
-
-#define loop8(i)                                    \
-{   t = ror32(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
-    t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
-    t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
-    t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
-    t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
-    t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
-    E_KEY[8 * i + 12] = t;                \
-    t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
-    t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
-    t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
-}
-
-static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
-		       unsigned int key_len, u32 *flags)
-{
-	struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
-	const __le32 *key = (const __le32 *)in_key;
-	u32 i, t, u, v, w;
-
-	if (key_len != 16 && key_len != 24 && key_len != 32) {
-		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
-		return -EINVAL;
-	}
-
-	ctx->key_length = key_len;
-
-	E_KEY[0] = le32_to_cpu(key[0]);
-	E_KEY[1] = le32_to_cpu(key[1]);
-	E_KEY[2] = le32_to_cpu(key[2]);
-	E_KEY[3] = le32_to_cpu(key[3]);
-
-	switch (key_len) {
-	case 16:
-		t = E_KEY[3];
-		for (i = 0; i < 10; ++i)
-			loop4 (i);
-		break;
-
-	case 24:
-		E_KEY[4] = le32_to_cpu(key[4]);
-		t = E_KEY[5] = le32_to_cpu(key[5]);
-		for (i = 0; i < 8; ++i)
-			loop6 (i);
-		break;
-
-	case 32:
-		E_KEY[4] = le32_to_cpu(key[4]);
-		E_KEY[5] = le32_to_cpu(key[5]);
-		E_KEY[6] = le32_to_cpu(key[6]);
-		t = E_KEY[7] = le32_to_cpu(key[7]);
-		for (i = 0; i < 7; ++i)
-			loop8 (i);
-		break;
-	}
-
-	D_KEY[0] = E_KEY[0];
-	D_KEY[1] = E_KEY[1];
-	D_KEY[2] = E_KEY[2];
-	D_KEY[3] = E_KEY[3];
-
-	for (i = 4; i < key_len + 24; ++i) {
-		imix_col (D_KEY[i], E_KEY[i]);
-	}
-
-	return 0;
-}
-
-/* encrypt a block of text */
-
-#define f_nround(bo, bi, k) \
-    f_rn(bo, bi, 0, k);     \
-    f_rn(bo, bi, 1, k);     \
-    f_rn(bo, bi, 2, k);     \
-    f_rn(bo, bi, 3, k);     \
-    k += 4
-
-#define f_lround(bo, bi, k) \
-    f_rl(bo, bi, 0, k);     \
-    f_rl(bo, bi, 1, k);     \
-    f_rl(bo, bi, 2, k);     \
-    f_rl(bo, bi, 3, k)
-
-static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
-{
-	const struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
-	const __le32 *src = (const __le32 *)in;
-	__le32 *dst = (__le32 *)out;
-	u32 b0[4], b1[4];
-	const u32 *kp = E_KEY + 4;
-
-	b0[0] = le32_to_cpu(src[0]) ^ E_KEY[0];
-	b0[1] = le32_to_cpu(src[1]) ^ E_KEY[1];
-	b0[2] = le32_to_cpu(src[2]) ^ E_KEY[2];
-	b0[3] = le32_to_cpu(src[3]) ^ E_KEY[3];
-
-	if (ctx->key_length > 24) {
-		f_nround (b1, b0, kp);
-		f_nround (b0, b1, kp);
-	}
-
-	if (ctx->key_length > 16) {
-		f_nround (b1, b0, kp);
-		f_nround (b0, b1, kp);
-	}
-
-	f_nround (b1, b0, kp);
-	f_nround (b0, b1, kp);
-	f_nround (b1, b0, kp);
-	f_nround (b0, b1, kp);
-	f_nround (b1, b0, kp);
-	f_nround (b0, b1, kp);
-	f_nround (b1, b0, kp);
-	f_nround (b0, b1, kp);
-	f_nround (b1, b0, kp);
-	f_lround (b0, b1, kp);
-
-	dst[0] = cpu_to_le32(b0[0]);
-	dst[1] = cpu_to_le32(b0[1]);
-	dst[2] = cpu_to_le32(b0[2]);
-	dst[3] = cpu_to_le32(b0[3]);
-}
-
-/* decrypt a block of text */
-
-#define i_nround(bo, bi, k) \
-    i_rn(bo, bi, 0, k);     \
-    i_rn(bo, bi, 1, k);     \
-    i_rn(bo, bi, 2, k);     \
-    i_rn(bo, bi, 3, k);     \
-    k -= 4
-
-#define i_lround(bo, bi, k) \
-    i_rl(bo, bi, 0, k);     \
-    i_rl(bo, bi, 1, k);     \
-    i_rl(bo, bi, 2, k);     \
-    i_rl(bo, bi, 3, k)
-
-static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
-{
-	const struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
-	const __le32 *src = (const __le32 *)in;
-	__le32 *dst = (__le32 *)out;
-	u32 b0[4], b1[4];
-	const int key_len = ctx->key_length;
-	const u32 *kp = D_KEY + key_len + 20;
-
-	b0[0] = le32_to_cpu(src[0]) ^ E_KEY[key_len + 24];
-	b0[1] = le32_to_cpu(src[1]) ^ E_KEY[key_len + 25];
-	b0[2] = le32_to_cpu(src[2]) ^ E_KEY[key_len + 26];
-	b0[3] = le32_to_cpu(src[3]) ^ E_KEY[key_len + 27];
-
-	if (key_len > 24) {
-		i_nround (b1, b0, kp);
-		i_nround (b0, b1, kp);
-	}
-
-	if (key_len > 16) {
-		i_nround (b1, b0, kp);
-		i_nround (b0, b1, kp);
-	}
-
-	i_nround (b1, b0, kp);
-	i_nround (b0, b1, kp);
-	i_nround (b1, b0, kp);
-	i_nround (b0, b1, kp);
-	i_nround (b1, b0, kp);
-	i_nround (b0, b1, kp);
-	i_nround (b1, b0, kp);
-	i_nround (b0, b1, kp);
-	i_nround (b1, b0, kp);
-	i_lround (b0, b1, kp);
-
-	dst[0] = cpu_to_le32(b0[0]);
-	dst[1] = cpu_to_le32(b0[1]);
-	dst[2] = cpu_to_le32(b0[2]);
-	dst[3] = cpu_to_le32(b0[3]);
-}
-
-
-static struct crypto_alg aes_alg = {
-	.cra_name		=	"aes",
-	.cra_driver_name	=	"aes-generic",
-	.cra_priority		=	100,
-	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
-	.cra_blocksize		=	AES_BLOCK_SIZE,
-	.cra_ctxsize		=	sizeof(struct aes_ctx),
-	.cra_alignmask		=	3,
-	.cra_module		=	THIS_MODULE,
-	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list),
-	.cra_u			=	{
-		.cipher = {
-			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
-			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
-			.cia_setkey	   	= 	aes_set_key,
-			.cia_encrypt	 	=	aes_encrypt,
-			.cia_decrypt	  	=	aes_decrypt
-		}
-	}
-};
-
-static int __init aes_init(void)
-{
-	gen_tabs();
-	return crypto_register_alg(&aes_alg);
-}
-
-static void __exit aes_fini(void)
-{
-	crypto_unregister_alg(&aes_alg);
-}
-
-module_init(aes_init);
-module_exit(aes_fini);
-
-MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
-MODULE_LICENSE("Dual BSD/GPL");
-
diff --git a/crypto/aes_generic.c b/crypto/aes_generic.c
new file mode 100644
index 0000000..e0c4f65
--- /dev/null
+++ b/crypto/aes_generic.c
@@ -0,0 +1,455 @@
+/* 
+ * Cryptographic API.
+ *
+ * AES Cipher Algorithm.
+ *
+ * Based on Brian Gladman's code.
+ *
+ * Linux developers:
+ *  Alexander Kjeldaas <astor@fast.no>
+ *  Herbert Valerio Riedel <hvr@hvrlab.org>
+ *  Kyle McMartin <kyle@debian.org>
+ *  Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API).
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * ---------------------------------------------------------------------------
+ * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
+ * All rights reserved.
+ *
+ * LICENSE TERMS
+ *
+ * The free distribution and use of this software in both source and binary
+ * form is allowed (with or without changes) provided that:
+ *
+ *   1. distributions of this source code include the above copyright
+ *      notice, this list of conditions and the following disclaimer;
+ *
+ *   2. distributions in binary form include the above copyright
+ *      notice, this list of conditions and the following disclaimer
+ *      in the documentation and/or other associated materials;
+ *
+ *   3. the copyright holder's name is not used to endorse products
+ *      built using this software without specific written permission.
+ *
+ * ALTERNATIVELY, provided that this notice is retained in full, this product
+ * may be distributed under the terms of the GNU General Public License (GPL),
+ * in which case the provisions of the GPL apply INSTEAD OF those given above.
+ *
+ * DISCLAIMER
+ *
+ * This software is provided 'as is' with no explicit or implied warranties
+ * in respect of its properties, including, but not limited to, correctness
+ * and/or fitness for purpose.
+ * ---------------------------------------------------------------------------
+ */
+
+/* Some changes from the Gladman version:
+    s/RIJNDAEL(e_key)/E_KEY/g
+    s/RIJNDAEL(d_key)/D_KEY/g
+*/
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/types.h>
+#include <linux/errno.h>
+#include <linux/crypto.h>
+#include <asm/byteorder.h>
+
+#define AES_MIN_KEY_SIZE	16
+#define AES_MAX_KEY_SIZE	32
+
+#define AES_BLOCK_SIZE		16
+
+/*
+ * #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) 
+ */
+static inline u8
+byte(const u32 x, const unsigned n)
+{
+	return x >> (n << 3);
+}
+
+struct aes_ctx {
+	int key_length;
+	u32 buf[120];
+};
+
+#define E_KEY (&ctx->buf[0])
+#define D_KEY (&ctx->buf[60])
+
+static u8 pow_tab[256] __initdata;
+static u8 log_tab[256] __initdata;
+static u8 sbx_tab[256] __initdata;
+static u8 isb_tab[256] __initdata;
+static u32 rco_tab[10];
+static u32 ft_tab[4][256];
+static u32 it_tab[4][256];
+
+static u32 fl_tab[4][256];
+static u32 il_tab[4][256];
+
+static inline u8 __init
+f_mult (u8 a, u8 b)
+{
+	u8 aa = log_tab[a], cc = aa + log_tab[b];
+
+	return pow_tab[cc + (cc < aa ? 1 : 0)];
+}
+
+#define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)
+
+#define f_rn(bo, bi, n, k)					\
+    bo[n] =  ft_tab[0][byte(bi[n],0)] ^				\
+             ft_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
+             ft_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
+             ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
+
+#define i_rn(bo, bi, n, k)					\
+    bo[n] =  it_tab[0][byte(bi[n],0)] ^				\
+             it_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
+             it_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
+             it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
+
+#define ls_box(x)				\
+    ( fl_tab[0][byte(x, 0)] ^			\
+      fl_tab[1][byte(x, 1)] ^			\
+      fl_tab[2][byte(x, 2)] ^			\
+      fl_tab[3][byte(x, 3)] )
+
+#define f_rl(bo, bi, n, k)					\
+    bo[n] =  fl_tab[0][byte(bi[n],0)] ^				\
+             fl_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
+             fl_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
+             fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
+
+#define i_rl(bo, bi, n, k)					\
+    bo[n] =  il_tab[0][byte(bi[n],0)] ^				\
+             il_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
+             il_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
+             il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
+
+static void __init
+gen_tabs (void)
+{
+	u32 i, t;
+	u8 p, q;
+
+	/* log and power tables for GF(2**8) finite field with
+	   0x011b as modular polynomial - the simplest primitive
+	   root is 0x03, used here to generate the tables */
+
+	for (i = 0, p = 1; i < 256; ++i) {
+		pow_tab[i] = (u8) p;
+		log_tab[p] = (u8) i;
+
+		p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
+	}
+
+	log_tab[1] = 0;
+
+	for (i = 0, p = 1; i < 10; ++i) {
+		rco_tab[i] = p;
+
+		p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
+	}
+
+	for (i = 0; i < 256; ++i) {
+		p = (i ? pow_tab[255 - log_tab[i]] : 0);
+		q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
+		p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
+		sbx_tab[i] = p;
+		isb_tab[p] = (u8) i;
+	}
+
+	for (i = 0; i < 256; ++i) {
+		p = sbx_tab[i];
+
+		t = p;
+		fl_tab[0][i] = t;
+		fl_tab[1][i] = rol32(t, 8);
+		fl_tab[2][i] = rol32(t, 16);
+		fl_tab[3][i] = rol32(t, 24);
+
+		t = ((u32) ff_mult (2, p)) |
+		    ((u32) p << 8) |
+		    ((u32) p << 16) | ((u32) ff_mult (3, p) << 24);
+
+		ft_tab[0][i] = t;
+		ft_tab[1][i] = rol32(t, 8);
+		ft_tab[2][i] = rol32(t, 16);
+		ft_tab[3][i] = rol32(t, 24);
+
+		p = isb_tab[i];
+
+		t = p;
+		il_tab[0][i] = t;
+		il_tab[1][i] = rol32(t, 8);
+		il_tab[2][i] = rol32(t, 16);
+		il_tab[3][i] = rol32(t, 24);
+
+		t = ((u32) ff_mult (14, p)) |
+		    ((u32) ff_mult (9, p) << 8) |
+		    ((u32) ff_mult (13, p) << 16) |
+		    ((u32) ff_mult (11, p) << 24);
+
+		it_tab[0][i] = t;
+		it_tab[1][i] = rol32(t, 8);
+		it_tab[2][i] = rol32(t, 16);
+		it_tab[3][i] = rol32(t, 24);
+	}
+}
+
+#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
+
+#define imix_col(y,x)       \
+    u   = star_x(x);        \
+    v   = star_x(u);        \
+    w   = star_x(v);        \
+    t   = w ^ (x);          \
+   (y)  = u ^ v ^ w;        \
+   (y) ^= ror32(u ^ t,  8) ^ \
+          ror32(v ^ t, 16) ^ \
+          ror32(t,24)
+
+/* initialise the key schedule from the user supplied key */
+
+#define loop4(i)                                    \
+{   t = ror32(t,  8); t = ls_box(t) ^ rco_tab[i];    \
+    t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
+    t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
+    t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
+    t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
+}
+
+#define loop6(i)                                    \
+{   t = ror32(t,  8); t = ls_box(t) ^ rco_tab[i];    \
+    t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
+    t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
+    t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
+    t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
+    t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
+    t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
+}
+
+#define loop8(i)                                    \
+{   t = ror32(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
+    t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
+    t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
+    t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
+    t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
+    t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
+    E_KEY[8 * i + 12] = t;                \
+    t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
+    t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
+    t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
+}
+
+static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
+		       unsigned int key_len, u32 *flags)
+{
+	struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
+	const __le32 *key = (const __le32 *)in_key;
+	u32 i, t, u, v, w;
+
+	if (key_len != 16 && key_len != 24 && key_len != 32) {
+		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
+		return -EINVAL;
+	}
+
+	ctx->key_length = key_len;
+
+	E_KEY[0] = le32_to_cpu(key[0]);
+	E_KEY[1] = le32_to_cpu(key[1]);
+	E_KEY[2] = le32_to_cpu(key[2]);
+	E_KEY[3] = le32_to_cpu(key[3]);
+
+	switch (key_len) {
+	case 16:
+		t = E_KEY[3];
+		for (i = 0; i < 10; ++i)
+			loop4 (i);
+		break;
+
+	case 24:
+		E_KEY[4] = le32_to_cpu(key[4]);
+		t = E_KEY[5] = le32_to_cpu(key[5]);
+		for (i = 0; i < 8; ++i)
+			loop6 (i);
+		break;
+
+	case 32:
+		E_KEY[4] = le32_to_cpu(key[4]);
+		E_KEY[5] = le32_to_cpu(key[5]);
+		E_KEY[6] = le32_to_cpu(key[6]);
+		t = E_KEY[7] = le32_to_cpu(key[7]);
+		for (i = 0; i < 7; ++i)
+			loop8 (i);
+		break;
+	}
+
+	D_KEY[0] = E_KEY[0];
+	D_KEY[1] = E_KEY[1];
+	D_KEY[2] = E_KEY[2];
+	D_KEY[3] = E_KEY[3];
+
+	for (i = 4; i < key_len + 24; ++i) {
+		imix_col (D_KEY[i], E_KEY[i]);
+	}
+
+	return 0;
+}
+
+/* encrypt a block of text */
+
+#define f_nround(bo, bi, k) \
+    f_rn(bo, bi, 0, k);     \
+    f_rn(bo, bi, 1, k);     \
+    f_rn(bo, bi, 2, k);     \
+    f_rn(bo, bi, 3, k);     \
+    k += 4
+
+#define f_lround(bo, bi, k) \
+    f_rl(bo, bi, 0, k);     \
+    f_rl(bo, bi, 1, k);     \
+    f_rl(bo, bi, 2, k);     \
+    f_rl(bo, bi, 3, k)
+
+static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
+{
+	const struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
+	const __le32 *src = (const __le32 *)in;
+	__le32 *dst = (__le32 *)out;
+	u32 b0[4], b1[4];
+	const u32 *kp = E_KEY + 4;
+
+	b0[0] = le32_to_cpu(src[0]) ^ E_KEY[0];
+	b0[1] = le32_to_cpu(src[1]) ^ E_KEY[1];
+	b0[2] = le32_to_cpu(src[2]) ^ E_KEY[2];
+	b0[3] = le32_to_cpu(src[3]) ^ E_KEY[3];
+
+	if (ctx->key_length > 24) {
+		f_nround (b1, b0, kp);
+		f_nround (b0, b1, kp);
+	}
+
+	if (ctx->key_length > 16) {
+		f_nround (b1, b0, kp);
+		f_nround (b0, b1, kp);
+	}
+
+	f_nround (b1, b0, kp);
+	f_nround (b0, b1, kp);
+	f_nround (b1, b0, kp);
+	f_nround (b0, b1, kp);
+	f_nround (b1, b0, kp);
+	f_nround (b0, b1, kp);
+	f_nround (b1, b0, kp);
+	f_nround (b0, b1, kp);
+	f_nround (b1, b0, kp);
+	f_lround (b0, b1, kp);
+
+	dst[0] = cpu_to_le32(b0[0]);
+	dst[1] = cpu_to_le32(b0[1]);
+	dst[2] = cpu_to_le32(b0[2]);
+	dst[3] = cpu_to_le32(b0[3]);
+}
+
+/* decrypt a block of text */
+
+#define i_nround(bo, bi, k) \
+    i_rn(bo, bi, 0, k);     \
+    i_rn(bo, bi, 1, k);     \
+    i_rn(bo, bi, 2, k);     \
+    i_rn(bo, bi, 3, k);     \
+    k -= 4
+
+#define i_lround(bo, bi, k) \
+    i_rl(bo, bi, 0, k);     \
+    i_rl(bo, bi, 1, k);     \
+    i_rl(bo, bi, 2, k);     \
+    i_rl(bo, bi, 3, k)
+
+static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
+{
+	const struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
+	const __le32 *src = (const __le32 *)in;
+	__le32 *dst = (__le32 *)out;
+	u32 b0[4], b1[4];
+	const int key_len = ctx->key_length;
+	const u32 *kp = D_KEY + key_len + 20;
+
+	b0[0] = le32_to_cpu(src[0]) ^ E_KEY[key_len + 24];
+	b0[1] = le32_to_cpu(src[1]) ^ E_KEY[key_len + 25];
+	b0[2] = le32_to_cpu(src[2]) ^ E_KEY[key_len + 26];
+	b0[3] = le32_to_cpu(src[3]) ^ E_KEY[key_len + 27];
+
+	if (key_len > 24) {
+		i_nround (b1, b0, kp);
+		i_nround (b0, b1, kp);
+	}
+
+	if (key_len > 16) {
+		i_nround (b1, b0, kp);
+		i_nround (b0, b1, kp);
+	}
+
+	i_nround (b1, b0, kp);
+	i_nround (b0, b1, kp);
+	i_nround (b1, b0, kp);
+	i_nround (b0, b1, kp);
+	i_nround (b1, b0, kp);
+	i_nround (b0, b1, kp);
+	i_nround (b1, b0, kp);
+	i_nround (b0, b1, kp);
+	i_nround (b1, b0, kp);
+	i_lround (b0, b1, kp);
+
+	dst[0] = cpu_to_le32(b0[0]);
+	dst[1] = cpu_to_le32(b0[1]);
+	dst[2] = cpu_to_le32(b0[2]);
+	dst[3] = cpu_to_le32(b0[3]);
+}
+
+
+static struct crypto_alg aes_alg = {
+	.cra_name		=	"aes",
+	.cra_driver_name	=	"aes-generic",
+	.cra_priority		=	100,
+	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
+	.cra_blocksize		=	AES_BLOCK_SIZE,
+	.cra_ctxsize		=	sizeof(struct aes_ctx),
+	.cra_alignmask		=	3,
+	.cra_module		=	THIS_MODULE,
+	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list),
+	.cra_u			=	{
+		.cipher = {
+			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
+			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
+			.cia_setkey	   	= 	aes_set_key,
+			.cia_encrypt	 	=	aes_encrypt,
+			.cia_decrypt	  	=	aes_decrypt
+		}
+	}
+};
+
+static int __init aes_init(void)
+{
+	gen_tabs();
+	return crypto_register_alg(&aes_alg);
+}
+
+static void __exit aes_fini(void)
+{
+	crypto_unregister_alg(&aes_alg);
+}
+
+module_init(aes_init);
+module_exit(aes_fini);
+
+MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
+MODULE_LICENSE("Dual BSD/GPL");
+MODULE_ALIAS("aes");
diff --git a/drivers/crypto/padlock-aes.c b/drivers/crypto/padlock-aes.c
index b643d71..a933293 100644
--- a/drivers/crypto/padlock-aes.c
+++ b/drivers/crypto/padlock-aes.c
@@ -5,7 +5,7 @@
  *
  * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
  *
- * Key expansion routine taken from crypto/aes.c
+ * Key expansion routine taken from crypto/aes_generic.c
  *
  * This program is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License as published by
diff --git a/drivers/crypto/padlock-generic.c b/drivers/crypto/padlock-generic.c
index 18cf0e8..a7a57f0 100644
--- a/drivers/crypto/padlock-generic.c
+++ b/drivers/crypto/padlock-generic.c
@@ -61,3 +61,5 @@ module_exit(padlock_fini);
 MODULE_DESCRIPTION("VIA PadLock crypto engine support.");
 MODULE_LICENSE("Dual BSD/GPL");
 MODULE_AUTHOR("Michal Ludvig");
+
+MODULE_ALIAS("aes");